

Reg. No.:	of orthogram	16				
Reg. No.:	**********		ruwallo	ed in the	buissin a	anti bal-
Name :		Walder has		t t		R

IV Semester B.Sc. Degree (CBCSS-Reg./Sup./Imp.) Examination, April 2020 (2014 Admn. Onwards)

COMPLEMENTARY COURSE IN MATHEMATICS
4C04 MAT-CS: Mathematics For Computer Science – IV

Time: 3 Hours Max. Marks: 40

A - NOITSECTION - A substant are SECTION - A

All the first 4 questions are compulsory. They carry 1 mark each.

- 1. Find the first partial derivatives of $\overline{v} = [\cos x \cosh y, \sin x \sinh y]$.
- 2. A line integral is path independent in a domain D if and only if its value around every closed path in D is zero. State True or False.
- 3. State Stoke's theorem.
- 4. The percentage error \in_r is defined by $\in_r = \dots$

SECTION - B (V) up + kb (sx) nie s-

Answer any 7 questions from among the questions 5 to 13. These questions carry 2 marks each.

- 5. Find the directional derivative of $f(x, y, z) = 2x^2 + 3y^2 + z^2$ at the point (2, 1, 3) in the direction of $\overline{i} 2\overline{k}$.
- 6. If $\overline{v} = yz\overline{i} + 3zx\overline{j} + z\overline{k}$, then directly compute div(curl \overline{v}).
- 7. If f(x, y, z) is a twice continuously differentiable scalar function, then show that curl(grad f) = 0.
- 8. Use Green's theorem to evaluate $\int_{c}^{\overline{F}.d\overline{r}}$ counterclockwise around the square C whose vertices are (0, 0), $(\pi/2, 0)$, $(\pi/2, \pi/2)$ and $(0, \pi/2)$ when \overline{F} is the vector [y sin x, 2x cosy].
- 9. Using the method of false position find an approximate numerical solution of $x^{2.2} = 69$ lying between 5 and 8.

10. Find the missing term in the following table using the forward difference operator,

3 .01111 111							
X	0	1	2	3	4		
y	1	3	9	_	81		

11. Evaluate $\int_0^{\pi} t \sin t dt$ using trapezoidal rule with $h = \pi/6$.

12. Given that $\frac{dy}{dx} - 1 = xy$ and y(0) = 1. Obtain the Taylor series for y(x) and compute y(0.1) correct to four decimal places.

13. From the differential equation y' = -y, estimate the value of y(0.04) by Euler's method with a step size of h = 0.01, given that y(0) = 1. (7×2=14)

the out totale need of Q william has

Answer any 4 questions from among the questions 14 to 19. These questions carry 3 marks each.

14. Determine a and b so that $\overline{v} = [2xy + 3yz, x^2 + axz - 4z^2, 3xy + 2byz]$ is irrotational.

15. Show that the differential form under the integral sign is exact and evaluate $\int_{(\pi,\pi/2,2)}^{(0,\pi,1)} -z \sin(xz) \ dx + \cos(y) \ dy - x \sin(xz) \ dz.$

16. Compute the flux of water through the parabolic cylinder $S: y = x^2, 0 \le x \le 2, 0 \le z \le 3$, if the velocity vector is $\overline{v} = \overline{F} = [3z^2, 6, 6xz]$.

17. Find the Lagrange interpolating polynomial of degree two approximating the function y = ln(x) defined by the following table. Hence determine ln(2.7).

X	2.0	2.5	12 m 13 / 15 / 15
y = ln(x)	0.69315	0.91629	1.09861

18. Evaluate $\int_0^1 \frac{1}{1+x} dx$ correct to three decimal places by Simpson's rule with h = 0.5, 0.25 and 0.125 respectively.

19. Using Picard's method solve the differential equation $\frac{dy}{dx} = \frac{x^2}{y^2 + 1}$, y(0) = 0 to find the values of y corresponding to x = 0.25, 0.5 and 1.0 correct to three decimal places. (4×3=12)

SECTION - D

Answer any 2 questions from among the questions 20 to 23. These questions carry 5 marks each.

- 20. a) Express the helix $\bar{r}(t) = [acost, asint, ct]$ (c \neq 0) with arc length s as the parameter.
 - b) Find the curvature and torsion of the helix in part (a).
- 21. Verify divergence theorem for the function $\overline{F}(x, y, z) = 7x\overline{i} z\overline{k}$ over the sphere $x^2 + y^2 + z^2 = 4$.
- 22. Compute $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ at x = 1.05 from the following data.

X	1.00	1.05	1.10	1.15	1.20	1.25	1.30
у	1.000	1.025	1.049	1.072	1.095	1.118	1.140

23. Use the Runge-Kutta method to solve $10\frac{dy}{dx} = x^2 + y^2$, y(0) = 1 for the interval $0 < x \le 0.3$ with h = 0.1. (2×5=10)